43 research outputs found

    Rehabilitation of Upper Extremity Nerve Injuries Using Surface EMG Biofeedback: Protocols for Clinical Application

    Get PDF
    Motor recovery following nerve transfer surgery depends on the successful re-innervation of the new target muscle by regenerating axons. Cortical plasticity and motor relearning also play a major role during functional recovery. Successful neuromuscular rehabilitation requires detailed afferent feedback. Surface electromyographic (sEMG) biofeedback has been widely used in the rehabilitation of stroke, however, has not been described for the rehabilitation of peripheral nerve injuries. The aim of this paper was to present structured rehabilitation protocols in two different patient groups with upper extremity nerve injuries using sEMG biofeedback. The principles of sEMG biofeedback were explained and its application in a rehabilitation setting was described. Patient group 1 included nerve injury patients who received nerve transfers to restore biological upper limb function (n = 5) while group 2 comprised patients where biological reconstruction was deemed impossible and hand function was restored by prosthetic hand replacement, a concept today known as bionic reconstruction (n = 6). The rehabilitation protocol for group 1 included guided sEMG training to facilitate initial movements, to increase awareness of the new target muscle, and later, to facilitate separation of muscular activities. In patient group 2 sEMG biofeedback helped identify EMG activity in biologically “functionless” limbs and improved separation of EMG signals upon training. Later, these sEMG signals translated into prosthetic function. Feasibility of the rehabilitation protocols for the two different patient populations was illustrated. Functional outcome measures were assessed with standardized upper extremity outcome measures [British Medical Research Council (BMRC) scale for group 1 and Action Research Arm Test (ARAT) for group 2] showing significant improvements in motor function after sEMG training. Before actual movements were possible, sEMG biofeedback could be used. Patients reported that this visualization of muscle activity helped them to stay motivated during rehabilitation and facilitated their understanding of the re-innervation process. sEMG biofeedback may help in the cognitively demanding process of establishing new motor patterns. After standard nerve transfers individually tailored sEMG biofeedback can facilitate early sensorimotor re-education by providing visual cues at a stage when muscle activation cannot be detected otherwise

    Self-contained neuromusculoskeletal arm prostheses

    Get PDF
    We report the use of a bone-anchored, self-contained robotic arm with both sensory and motor components over 3 to 7 years in four patients after transhumeral amputation. The implant allowed for bidirectional communication between a prosthetic hand and electrodes implanted in the nerves and muscles of the upper arm and was anchored to the humerus through osseointegration, the process in which bone cells attach to an artificial surface without formation of fibrous tissue. Use of the device did not require formal training and depended on the intuitive intent of the user to activate movement and sensory feedback from the prosthesis. Daily use resulted in increasing sensory acuity and effectiveness in work and other activities of daily life

    Selective Denervation of the Facial Dermato-Muscular Complex in the Rat: Experimental Model and Anatomical Basis

    Full text link
    The facial dermato-muscular system consists of highly specialized muscles tightly adhering to the overlaying skin and thus form a complex morphological conglomerate. This is the anatomical and functional basis for versatile facial expressions, which are essential for human social interaction. The neural innervation of the facial skin and muscles occurs via branches of the trigeminal and facial nerves. These are also the most commonly pathologically affected cranial nerves, often requiring surgical treatment. Hence, experimental models for researching these nerves and their pathologies are highly relevant to study pathophysiology and nerve regeneration. Experimental models for the distinctive investigation of the complex afferent and efferent interplay within facial structures are scarce. In this study, we established a robust surgical model for distinctive exploration of facial structures after complete elimination of afferent or efferent innervation in the rat. Animals were allocated into two groups according to the surgical procedure. In the first group, the facial nerve and in the second all distal cutaneous branches of the trigeminal nerve were transected unilaterally. All animals survived and no higher burden was caused by the procedures. Whisker pad movements were documented with video recordings 4 weeks after surgery and showed successful denervation. Whole-mount immunofluorescent staining of facial muscles was performed to visualize the innervation pattern of the neuromuscular junctions. Comprehensive quantitative analysis revealed large differences in afferent axon counts in the cutaneous branches of the trigeminal nerve. Axon number was the highest in the infraorbital nerve (28,625 ± 2,519), followed by the supraorbital nerve (2,131 ± 413), the mental nerve (3,062 ± 341), and the cutaneous branch of the mylohyoid nerve (343 ± 78). Overall, this surgical model is robust and reliable for distinctive surgical deafferentation or deefferentation of the face. It may be used for investigating cortical plasticity, the neurobiological mechanisms behind various clinically relevant conditions like facial paralysis or trigeminal neuralgia as well as local anesthesia in the face and oral cavity

    Proof of concept for multiple nerve transfers to a single target muscle

    Get PDF
    Surgical nerve transfers are used to efficiently treat peripheral nerve injuries, neuromas, phantom limb pain, or improve bionic prosthetic control. Commonly, one donor nerve is transferred to one target muscle. However, the transfer of multiple nerves onto a single target muscle may increase the number of muscle signals for myoelectric prosthetic control and facilitate the treatment of multiple neuromas. Currently, no experimental models are available. This study describes a novel experimental model to investigate the neurophysiological effects of peripheral double nerve transfers to a common target muscle. In 62 male Sprague-Dawley rats, the ulnar nerve of the antebrachium alone (n=30) or together with the anterior interosseus nerve (n=32) was transferred to reinnervate the long head of the biceps brachii. Before neurotization, the motor branch to the biceps\u27 long head was transected at the motor entry point. Twelve weeks after surgery, muscle response to neurotomy, behavioral testing, retrograde labeling, and structural analyses were performed to assess reinnervation. These analyses indicated that all nerves successfully reinnervated the target muscle. No aberrant reinnervation was observed by the originally innervating nerve. Our observations suggest a minimal burden for the animal with no signs of functional deficit in daily activities or auto-mutilation in both procedures. Furthermore, standard neurophysiological analyses for nerve and muscle regeneration were applicable. This newly developed nerve transfer model allows for the reliable and standardized investigation of neural and functional changes following the transfer of multiple donor nerves to one target muscle

    Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses

    Get PDF
    Conventional prosthetic arms suffer from poor controllability and lack of sensory feedback. Owing to the absence of tactile sensory information, prosthetic users must rely on incidental visual and auditory cues. In this study, we investigated the effect of providing tactile perception on motor coordination during routine grasping and grasping under uncertainty. Three transhumeral amputees were implanted with an osseointegrated percutaneous implant system for direct skeletal attachment and bidirectional communication with implanted neuromuscular electrodes. This neuromusculoskeletal prosthesis is a novel concept of artificial limb replacement that allows to extract control signals from electrodes implanted on viable muscle tissue, and to stimulate severed afferent nerve fibers to provide somatosensory feedback. Subjects received tactile feedback using three biologically inspired stimulation paradigms while performing a pick and lift test. The grasped object was instrumented to record grasping and lifting forces and its weight was either constant or unexpectedly changed in between trials. The results were also compared to the no-feedback control condition. Our findings confirm, in line with the neuroscientific literature, that somatosensory feedback is necessary for motor coordination during grasping. Our results also indicate that feedback is more relevant under uncertainty, and its effectiveness can be influenced by the selected neuromodulation paradigm and arguably also the prior experience of the prosthesis user

    Upper limb prostheses: bridging the sensory gap

    Get PDF
    Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality

    Functional and Psychosocial Outcomes of Hand Transplantation Compared with Prosthetic Fitting in Below-Elbow Amputees:A Multicenter Cohort Study

    Get PDF
    BACKGROUND:Hand-transplantation and improvements in the field of prostheses opened new frontiers in restoring hand function in below-elbow amputees. Both concepts aim at restoring reliable hand function, however, the indications, advantages and limitations for each treatment must be carefully considered depending on level and extent of amputation. Here we report our findings of a multi-center cohort study comparing hand function and quality-of-life of people with transplanted versus prosthetic hands. METHODS:Hand function in amputees with either transplant or prostheses was tested with Action Research Arm Test (ARAT), Southampton Hand Assessment Procedure (SHAP) and the Disabilities of the Arm, Shoulder and Hand measure (DASH). Quality-of-life was compared with the Short-Form 36 (SF-36). RESULTS:Transplanted patients (n = 5) achieved a mean ARAT score of 40.86 ± 8.07 and an average SHAP score of 75.00 ± 11.06. Prosthetic patients (n = 7) achieved a mean ARAT score of 39.00 ± 3.61 and an average SHAP score of 75.43 ± 10.81. There was no significant difference between transplanted and prosthetic hands in ARAT, SHAP or DASH. While quality-of-life metrics were equivocal for four scales of the SF-36, transplanted patients reported significantly higher scores in "role-physical" (p = 0.006), "vitality" (p = 0.008), "role-emotional" (p = 0.035) and "mental-health" (p = 0.003). CONCLUSIONS:The indications for hand transplantation or prosthetic fitting in below-elbow amputees require careful consideration. As functional outcomes were not significantly different between groups, patient's best interests and the route of least harm should guide treatment. Due to the immunosuppressive side-effects, the indication for allotransplantation must still be restrictive, the best being bilateral amputees

    Axonal mapping of the motor cranial nerves

    Get PDF
    Basic behaviors, such as swallowing, speech, and emotional expressions are the result of a highly coordinated interplay between multiple muscles of the head. Control mechanisms of such highly tuned movements remain poorly understood. Here, we investigated the neural components responsible for motor control of the facial, masticatory, and tongue muscles in humans using specific molecular markers (ChAT, MBP, NF, TH). Our findings showed that a higher number of motor axonal population is responsible for facial expressions and tongue movements, compared to muscles in the upper extremity. Sensory axons appear to be responsible for neural feedback from cutaneous mechanoreceptors to control the movement of facial muscles and the tongue. The newly discovered sympathetic axonal population in the facial nerve is hypothesized to be responsible for involuntary control of the muscle tone. These findings shed light on the pivotal role of high efferent input and rich somatosensory feedback in neuromuscular control of finely adjusted cranial systems

    Simulating Surgical Skills in Animals: Systematic Review, Costs & Acceptance Analyses

    Get PDF
    Background:Modern surgery demands high-quality and reproducibility. Due to new working directives, resident duty hours have been restricted and evidence exists that pure on-the-job training provides insufficient exposure. We hypothesize that supplemental simulations in animal models provide a realistic training to augment clinical experiences. This study reviews surgical training models, their costs and survey results illustrating academic acceptance. Methods:Animal models were identified by literature research. Costs were analyzed from multiple German and Austrian training programs. A survey on their acceptance was conducted among faculty and medical students. Results:915 articles were analyzed, thereof 91 studies describedin-vivoanimal training models, predominantly for laparoscopy (30%) and microsurgery (24%). Cost-analysis revealed single-training costs between 307euro and 5,861euro depending on model and discipline. Survey results illustrated that 69% of the participants had no experience, but 66% would attend training under experienced supervision. Perceived public acceptance was rated intermediate by medical staff and students (4.26;1-low, 10 high). Conclusion:Training in animals is well-established and was rated worth attending in a majority of a representative cohort to acquire key surgical skills, in light of reduced clinical exposure. Animal models may therefore supplement the training of tomorrow's surgeons to overcome limited hands-on experience until virtual simulations can provide such educational tools
    corecore